Lane Departure Warning System – <u>ROAD SCENE IMAGE ANALYSIS IN LANE DEPARTURE WARNING SYSTEMS</u> HTTPS://WWW.LANEDEPARTUREWARNING.ORG/

DISCLAIMER: This file presents information in a potential area of automotive advanced safety system technology. The information presented in this file is in no way intended to be, either directly or indirectly, representative of completely formulated and organized aspects of the respective technology, and should not be assumed to be such unless it is expressly indicated to the contrary by the inventor via a formal notification method of his choosing. It is not intended to take the place of laws, regulations, safe driving habits or common sense. ALWAYS DRIVE SAFELY! This proviso may apply to any other works by the inventor.

Road Scene Image Analysis in Lane Departure Warning Systems

Christopher A. Warner Department of Electrical and Systems Engineering Oakland University, Rochester, Michigan USA.

Abstract

This paper will cover many aspects of image analysis including image pre-processing, image segmentation, and contextual analysis for road scene images acquired using a digital camera mounted to the rear-view mirror of different automobiles. In particular, road marker characteristics will be extracted including those for various white and yellow longitudinal lane markers. This lane marker information will serve to provide a position with respect to the lane for the vehicle as it travels down the road. If the vehicle should transition towards a position outside the lane boundary, the image processing system will have the potential to notify the vehicle operator that a lane departure is pending. This vehicular image processing system should be relatively invariant to illumination conditions and should be able to perform during a wide range of environmental conditions. This paper will also discuss many of the aspects required to implement the software in Matlab including flowcharts and partial code listings. Preliminary output results for the preliminary road scene image processing system will also be given.

TABLE OF CONTENTS

	<u>tion</u>		Page(s)
		d Abstract	Х
1.	Introduc		10
		Justification for road scene image processing systems	10
		Overview of the Preliminary Road Scene Image Processing System	12
		Current and future directions	15
2.		tructural (syntactic) and statistical pattern classification	16
		Introduction and preliminary goals	16
		Potential method overview and sample longitudinal lane marker characteristics	17
3.		ary regulatory information	20
	3.1	Lane marking function, delineation, and common patterns from the Manual on	
		Uniform Traffic Control Devices for Streets and Highways (MUTCD)	20
		Other resources for regulatory information	23
4.		presentation formats	24
		Image representation formats and color spaces	24
		Generating approximated 'grayscale' data from the RGB color space	24
		Comparison of data obtained from RGB to HSV and RGB to YIQ transforms	33
5.		re-processing	36
		Overview of pre-processing	36
		Noise reduction filters and median filters	36
		One dimensional and two dimensional convolution	41
6.		d line operators and edge detection	42
		Directional derivative and gradient	42
		Prewitt and Sobel edge operators and vertical edge and line operators	45
		The generalized diagonal operators	53
	6.4	Edge detection for longitudinal lane markers of roads of various	
		curvatures and the effects of threshold variation	54
	6.5	Preliminary edge segmentation, 'first level discrimination', and intermediate	
		detection results	65
		Preliminary explanation for color supplemented segmentation	71
	6.7	Preliminary isolation of various shades for yellow longitudinal markers and color	r
		segmentation	76
7.		bal Edge Map (GEM) concept, segmentation, and classification	86
		Idea behind the Global Edge Map concept and generating an edge map	86
		Interconnection of the GEM using connected components on detected edges	89
	7.3	Preliminary GEM discrimination and classification	92
	7.4	Justification for high dynamic range camera (HDRC) systems	101
8.		ual analysis	103
	8.1	Calculating slope approximations, slope averages, and generating	
		line approximations	103
	8.2	Using a system of linear equations to couple likely individual border projections	114
9.	Prelimi	nary standards information	129
		Introduction	129
	9.2	ISO 17361:2007	129
10.	Creatir	ng a Graphical User Interface in Matlab for the Preliminary Road Scene Image	
	Proces	sing System	131
11.	Refere	nces	135
12.	Appen	dix	137
		B cropped road scene images with projections	137-154
		nes of some roadways traveled and vehicles used for road scene image collection	155
	Part	ial specifications on Canon PowerShot A85 camera	155

LIST OF FIGURES

Figur	<u>e</u>	Page(s
X.	Block diagram of a general image processing system	12
X(a).	Road scene with both broken lane markers	14
X(b).	Road scene where curb side normal lane marker not present	14
Х.	General flow to preliminary road scene image processing software written in Matlab	14
X(a).	Road scene image showing combinations of different types of lane markers	17
X(b).	Road scene image showing combinations of different types of lane markers	17
Х.	Potential generalized block diagram for performing hybrid structural (syntactic) and statis	tical
	pattern classification	18
Х.	Some characteristics of the structure of a broken white lane marker	18
	Road scene showing combinations of different types of lane markers	21
X(b).	Road scene showing combinations of different types of lane markers	21
Х.	Road scene with 'normal' and 'broken' combination of yellow longitudinal lane markers	22
	Road scene showing 'wide' channelizing lane markers	22
	Road scene showing 'wide' channelizing lane markers	22
Х.	Road scene showing 'broken' and 'dotted' longitudinal lane marker distinction	23
Х.	Code listing portion for function rgb2yiq.m	24-25
	Cropped RGB image	26
	Grayscale approximation to RGB image from rgb2yiq.m	26
Х.	Code listing portion for function rgb2hsv.m	28-29
	Sample image covering large range of image colors	29
	Hue channel output of function rgb2hsv.m	29
	Saturation channel output of function rgb2hsv.m	30
	Value channel output of function rgb2hsv.m	30
	Cropped RGB Image	31
	Hue channel output	31
	Saturation channel output	31
	Value channel output	31
	Cropped RGB Image	32
	Hue channel output	32
	Saturation channel output	32
	Value channel output Original argumed BCB Image	32
	Original cropped RGB Image Intensity image from YIQ transform	33 33
	Value image from HSV transform	33
X(c). X.	Signal filtering process	36
	Masks for noise reduction with weight value 1/9	36
	Masks for noise reduction with weight value 1/16	36
	Masks for noise reduction with weight value 1/10 Masks for noise reduction with weight value 1/81	36
	Grayscale image	37
	Output of mask with weight 1/9	37
	Output of mask with weight 1/16	37
	Output of mask with weight 1/81	37
	Grayscale image	38
	Output of 3x3 median filter	38
X.	Difference between grayscale approximation and output of median filter	39
X.	Code listing portion for function sample_filt.m	40
X(a).	Geometric interpretation of directional derivative in the x-direction	42
	Projection in XZ plane	42
	Cropped image showing various normal markers	43
X(b).	Grayscale approximation	43
	Grayscale cropped from (100:164,70:130)	43
X(d).	Rotated surface plot	43

X(a).	Grayscale image	44
	Magnitude output from gradient function on same image	44
	Gradient magnitude output for gradient directions $30^{\circ} < \Theta < 60^{\circ}$ and $-30^{\circ} < \Theta < -60$	45
	Binary thresholded gradient magnitude for gradient direction with threshold set at 50	45
	Prewitt edge operators	45
	Sobel edge operators	45
	Original RGB cropped image	46
	• • • •	
	Output from Prewitt compass operator	46
	Output from Sobel compass operator	46
	Example of 1 pixel wide vertical line detector	47
	Example of vertical edge detector pair for detecting dark to light and light to dark transition	
	Grayscale approximated road scene image	47
	Output of vertical line detector when applied to road scene image	47
	Binary thresholded output of vertical line detector (threshold = 150)	48
	Binary thresholded output of vertical line detector (threshold = 180)	48
	Binary thresholded output of vertical line detector (threshold = 210)	48
	Thresholded vertical line detector superimposed (in red) on RGB image	48
	Thresholded output of vertical edge detector (threshold = 235)	49
X(j).	Thresholded dark to light and light to dark vertical edge detector superimposed in	
	light red and dark red, respectively, on RGB image	49
X(a).	RGB cropped road scene image with dark to light and light to dark edge transitions	
	highlighted in darker red and lighter red colors, respectively	49
X(b).	RGB cropped road scene image with dark to light and light to dark edge transitions	
	highlighted in darker red and lighter red colors, respectively	49
X(a).	Normal white lane marker on 'darker colored' road surface	51
	Broken white marker on 'lighter colored' road surface	51
	Wide and normal white markers at exit ramp in partial shade on degraded road surface	51
	Broken white markers on 'lighter multi-colored' road surface in bright sunlight	51
	Combination of normal and broken yellow and broken white markers	52
	Faded broken yellow and normal white markers	52
X.	Generalized mask pair for positive slope dark to light transitions of slope approximately one	
X.	Generalized mask pair for positive slope light to dark transitions of slope approximately one	
	Approximately straight road	54
	Larger radius road curvature	54
	Moderate radius road curvature	54
	Smaller radius road curvature	54
	Road scene with moderate curvature to left	55
	Different scene with moderate curvature to right	55
	Generalized edge detection process (with detected edges superimposed in black)	55
$\Lambda(a).$	with threshold = 180	56
$\mathbf{V}(\mathbf{h})$		50
$\mathbf{A}(\mathbf{D}).$	Generalized edge detection process (with detected edges superimposed in black) with	56
$\mathbf{V}(\mathbf{z})$	threshold = 70 for same road scene image	56
X(C).	Generalized edge detection process (with detected edges superimposed in black)	5.0
X Z(1)	with threshold = 180 for second road scene image	56
X(d).	Generalized edge detection process (with detected edges superimposed in black) with	
	threshold = 70 for second road scene image	56
	RGB cropped road scene	57
	Detected edges overlayed in black with threshold $= 70$	57
Х.		58-64
Х.	High level flow to first portion of image segmentation	65
Х.		66-67
X(a).	Artificial road scene image with sample longitudinal lane makers in FOV for vehicle	
	positioning near 'center of lane'	68
X(b).	Artificial road scene image with sample longitudinal lane makers in FOV for vehicle	
	positioning far from 'center of lane'	68
X(a).	Scene of vehicle with attached 'stripes' in region of interest	68

X(b).	Scene of vehicle with attached 'stripes' in region of interest	68
	Original cropped RGB image data	69
	Approximated grayscale version	69
	Unthresholded output from negative slope generalized edge detector	69
	Unthresholded output from positive slope generalized edge detector	69
	Combined generalized edge detector masked output superimposed on grayscale	07
11(0).	approximation	70
X(a)	First cropped RGB road scene image with degraded broken yellow marker	71
	Grayscale approximation to first image	71
	Second color road scene image with degraded yellow marker	71
	Grayscale approximation to second image	71
X(u). X.	Detail using Matlab zoom command for figure X (a) (rows 87:97, columns 62:80)	72
	Road scene image	73
	Grayscale approximation of figure X(a)	74
X.	Different shades taken from yellow longitudinal markers for various road scene images	75
	RGB color for $[R,G,B] = [0.89,0.88,0.5]$ with $G/R = 0.98$, $R/B = 1.8$, $B/G = 0.57$	77
	RGB color for $[R,G,B] = [0.8,0.65,0.15]$ with $G/R = 0.83$, $R/B = 4.9$, $B/G = 0.25$	77
	RGB color for $[R,G,B] = [0.66,0.59,0.23]$ with $G/R = 0.89$, $R/B = 2.91$, $B/G = 0.39$	77
	RGB color for $[R,G,B] = [0.43,0.36,0.04]$ with $G/R = 0.84$, $R/B = 11$, $B/G = 0.11$	77
	Cropped road scene image	78
	Image with 'yellow longitudinal marker shades' color characteristic isolated	78
	Cropped road scene image	78
~ /	Image with 'yellow longitudinal marker shades' color characteristic isolated	78
	Cropped road scene image	79
	Image with 'yellow longitudinal marker shades' color characteristic isolated	79
	Cropped road scene image	79
X(h).	Image with 'yellow longitudinal marker shades' color characteristic isolated	79
X(i).	Cropped road scene image	80
X(j).	Image with 'yellow longitudinal marker shades' color characteristic isolated	80
X(k).	Cropped road scene image	80
X(l).	Image with 'yellow longitudinal marker shades' color characteristic isolated	80
	Cropped road scene image	81
	Image with 'yellow longitudinal marker shades' color characteristic isolated	81
~ /	Cropped road scene image	81
· •	Image with 'yellow longitudinal marker shades' color characteristic isolated	81
	Cropped road scene image	82
	Image with 'yellow longitudinal marker shades' color characteristic isolated	82
	Cropped road scene image	82
	Image with 'yellow longitudinal marker shades' color characteristic isolated	82
X(a).	Road scene of figure X(a) showing distinct yellow longitudinal lane markers from analysis	
	incorporating GEM values, color characteristics, and dimensional relationships	83
X(b).	Road scene of figure X(c) showing distinct yellow longitudinal lane markers from analysis	
	incorporating GEM values, color characteristics, and dimensional relationships	83
X(c).	Road scene of figure X(e) showing distinct yellow longitudinal lane markers from analysis	
	incorporating GEM values, color characteristics, and dimensional relationships	83
X(d).	Road scene of figure X(g) showing distinct yellow longitudinal lane markers from analysis	
N/	incorporating GEM values, color characteristics, and dimensional relationships	83
X(e).	Road scene of figure X(i) showing distinct yellow longitudinal lane markers from analysis	
NZ (O	incorporating GEM values, color characteristics, and dimensional relationships	84
X(†).	Road scene of figure X(k) showing distinct yellow longitudinal lane markers from analysis	
	incorporating GEM values, color characteristics, and dimensional relationships	84

X(g).	Road scene of figure X(m) showing distinct yellow longitudinal lane markers from analysis incorporating GEM values, color characteristics, and dimensional relationships	84
X(h).	Road scene of figure X(o) showing distinct yellow longitudinal lane markers from analysis incorporating GEM values, color characteristics, and dimensional relationships	84
X(i).	Road scene of figure X(q) showing distinct yellow longitudinal lane markers from analysis incorporating GEM values, color characteristics, and dimensional relationships	85
X(i)	Road scene of figure X(s) showing distinct yellow longitudinal lane markers from analysis	05
A(j).	incorporating GEM values, color characteristics, and dimensional relationships	85
X(a)	Artificial road scene image with sample longitudinal lane makers in FOV	86
	Sample portion of potential edge map	86
X.	High level flow leading to GEM discrimination	86
X.	Code listing for portion of function update_global_edge_map_matrix_array.m	87
	RGB cropped road scene image	88
	Grayscale approximation with edge values superimposed in black	88
	Portion of global edge map values superimposed in color on RGB cropped road scene image	
X.	Example of four connectedness	89
X(a).	Original cropped RGB image	90
	Various types of 'interconnectedness'	90
X(a).	Sample search arrangement	91
X(b).	Preliminary generalized method for connecting joining components	91
Х.	Code listing portion for function remove_currently_unusable_data_from_gem.m	93-94
X(a).	Original cropped RGB image	95
	Preliminary results of detection, connection, and GEM discrimination	95
	Original cropped RGB image	95
X(d).	Preliminary results of detection, connection, and GEM discrimination	95
Х.	Preliminary results of detection, connection, and GEM discrimination with raised	
	thresholds for road scene image of figure X (c)	96
	Cropped RGB image	97
	Preliminary results of detection, connection, and GEM discrimination	97
	Cropped RGB image	97
	Preliminary results of detection, connection, and GEM discrimination	97
	Cropped RGB road scene image	98
	Preliminary results of detection, connection, and GEM discrimination	98
X(C).	Segments of sufficient length (shown in red) which provide potentially useful	00
$\mathbf{V}(\mathbf{a})$	boundary information Segments of sufficient length (shown in red) which provide potentially useful	98
л(a).	boundary information	99
$\mathbf{X}(\mathbf{h})$	Segments of sufficient length (shown in red) which provide potentially useful	77
$\Lambda(0).$	boundary information	99
$\mathbf{X}(\mathbf{c})$	Segments of sufficient length (shown in red) which provide potentially useful	
M (C).	boundary information	99
X (d).	Segments of sufficient length (shown in red) which provide potentially useful	
11(0).	boundary information	99
X.	Segments of sufficient length (shown in red) which provide potentially useful	
	boundary information	100
X(a).	Original RGB cropped image	101
	Grayscale approximation	101
	Preliminary results of detection, connection, and GEM discrimination with existing threshold	
```	using the generalized diagonal detector	101
X(a).	Preliminary results of detection, connection, and GEM discrimination with drastically reduc	ed
	thresholds using the generalized diagonal detector	102
X(b).	Preliminary results of detection, connection, and GEM discrimination with existing threshol	ds
	using the vertical edge detector	102
X(c).	Contrast enhanced grayscale approximation within region of interest	102

X.	Code listing portion for calculating slope approximations on edges passing	
	discrimination	104-105
X.	Code listing portion for function approx_slope.m finding the approximate slope of a	
	line with two endpoints	106
X.	Code listing portion for function approx_slope_averaging.m	107-108
X(a).	Showing (row, column) format for Matlab matrices	109
	Cartesian coordinate system	109
X.	Code listing portion for function generate_line_approximations.m	110-111
X(a).	Original cropped RGB image	112
	Preliminary results of detection, connection, and GEM discrimination	112
	Original cropped RGB image	112
	Preliminary results of detection, connection, and GEM discrimination	112
	Original cropped RGB image	113
	Preliminary results of detection, connection, and GEM discrimination	113
X.	Cartesian coordinate representation of lines $L_1$ and $L_2$ with points	115
21.	$(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4)$	114
X.	Projections of lines $L_1$ and $L_2$ with labeling of additional points	114
	Cropped RGB image	115
	Preliminary results of detection, connection, and GEM discrimination	116
	RGB cropped including projections	110
	Cropped RGB image	117
	Preliminary results of detection, connection, and GEM discrimination	118
	RGB cropped including projections	118
	Cropped RGB image	118
	Preliminary results of detection, connection, and GEM discrimination	119
	RGB cropped including projections	119
	Cropped RGB image	119
	Preliminary results of detection, connection, and GEM discrimination	120
	RGB cropped including projections	120
	Cropped RGB road scene image	120
	Preliminary results of detection, connection, and GEM discrimination	121
	RGB cropped including projections	121
	RGB cropped road scene with projections	121
	RGB cropped road scene with projections	122
	RGB cropped road scene with projections	122
	RGB cropped road scene with projections	122
	RGB cropped road scene with projections	122
	RGB cropped road scene with projections	123
	RGB cropped road scene with projections	123
	RGB cropped road scene with projections	123
	Cropped RGB road scene image	124
	Preliminary results of detection, connection, and GEM discrimination	124
	RGB cropped showing only positive sloped projections in red	124
	RGB cropped image with severely degraded yellow marker	125
	Preliminary results of detection, connection, and GEM discrimination	125
	RGB cropped road scene image with projections in red	125
	RGB cropped road scene with projections	126
	RGB cropped road scene with projections	126
	RGB cropped road scene with projections	126
	RGB cropped road scene with projections	126
	RGB cropped road scene with projections	127
	RGB cropped road scene with projections	127
	RGB cropped road scene with projections	127
	Sample road scene image with modified projection lines	130
	Same road scene image with different projection lines	130
X.	A potential user interface for the Preliminary Road Scene Image Processing Software	132

X.	A potential user interface for the Preliminary Road Scene Image Processing Software	133
X.	Preliminary road information generated by selecting 'Display selected info' from main	

menu 134

# LIST OF TABLES

Table		Page(s)
X.	Some potential factors affecting lane delineation	11
Х.	Some lane marking delineation based on marker color	20
X.	Five commonly found patterns with associated characteristics	21
X.	Grayscale approximated image data from figure X (b) (rows 157:164, columns 19:32)	27
Х.	Proposed daytime luminance factors (%) for retroreflective pavement marking material with	1
	CIE 2° standard observer and 45/0 (0/45) geometry and CIE standard illuminant $D_{65}$	27
X(a).	Portion (rows 156:164, columns 67:81) of image data of figure X from approximation for	
	normal yellow marker from rgb2yiq.m	34
X(b).	Portion (rows 156:164, columns 67:81) of image data of figure X from approximation for	
	normal yellow marker from rgb2hsv.m	34
X(a).	Portion (rows 112:120, columns 274:288) of image data of figure X from approximation for	
	broken white marker from rgb2yiq.m	35
X(b).	Portion (rows 112:120, columns 274:288) of image data of figure X from approximation for	•
	broken white marker from rgb2hsv.m	35
X.	Grayscale approximated values from figure X(b) (rows 87:97, columns 62:80	72
X.	Daytime color specification limits for retroreflective pavement marking material with CIE 2	20
	standard observer and 45/0 (0/45) geometry and CIE standard illuminant $D_{65}$	76
X.	Roadways traveled during road scene image acquisition	155
Х.	Vehicles used during road scene image acquisition	155
X	Partial specifications on Canon PowerShot A85 camera	155

#### 1. INTRODUCTION

#### 1.1 Justification for road scene image processing systems

In the United States in the year 2000, there were approximately 6.4 million motor vehicle crashes reported to police [11]. In many of these crashes, the position of the vehicle with respect to its travel lane was an important characteristic of the situation. Although longitudinal lane pavement markings are intended to support the regulated movement of traffic within the roadway (thus reducing the likelihood of crashes), there are also many other important factors which must be considered in any traffic situation including (but not limited to) the number and type(s) of vehicle(s) involved, the vehicle(s) dynamic operating conditions, the absence or presence of an 'intended' lane transition, the type of transition (drifting, passing, intentional lane change, etc.), the physical setting, and environmental conditions. Two resources which may be referenced regarding analysis of vehicular crashes including those involving lane changes are given in [11] and [12]. It should be noted that lane change crashes sharing the characteristics of multiple vehicle, same direction, parallel path scenarios are not the only occurrences where longitudinal lane pavement markings may play a significant role in crash circumstances. Consider also crashes involving roadway departure or vehicles traveling in opposite directions (just to name two of the many others). Nonetheless, longitudinal lane markers (when present) serve to provide information including (but not limited to) boundary and guidance to be used by the motor vehicle operator on that roadway. The 2004 edition of A Policy on Geometric Design of Highways and Streets indicates that road-following and safe-path maintenance in response to road and traffic conditions are significant to performing vehicle guidance [26]. Thus, the ability of an individual vehicle operator to extract and interpret lane marker information is of paramount importance to the vehicle operator's efficient and safe usage of the roadway. However, situations (driver distraction, driver physical impairment, etc.) may arise which might potentially prevent the operator of a vehicle from using all of the available traffic control device resources (including lane markers). Under these circumstances, having a road scene image processing system in place as part of an overall vehicular safety system being used to minimize the potential consequences of 'missed lane markings' could potentially assist in reducing the frequency of crash occurrences, reducing crash severity, and thus helping to save lives. Additionally, a road scene image processing system might potentially provide travel lane guidance and roadway delineation where the absence or obscurement of a formal longitudinal lane marker has created some travel lane uncertainty. Note that great care must be taken when attempting to quantify and qualify important factors including (but not limted to) the position of a vehicle within its lane as well as when a vehicle has deviated from its lane, the intended or unintended maneuvers of a vehicle operator within the roadway, and the effectiveness in which a road scene image processing system both interprets road scene information and alerts vehicle operators to potentially dangerous situations.

There are many important factors which need to be considered governing the effectiveness of traffic control devices (including longitudinal lane pavement markers). The 2003 MUTCD lists five basic requirements as [10]:

- 1. Fulfill a need;
- 2. Command attention;
- 3. Convey a clear, simple meaning;
- 4. Command respect from the road users;
- 5. Give adequate time for proper response.

One of the primary needs is to provide lane delineation assisting guidance of the vehicle traveling on the roadway. Thus, a longitudinal lane marker should be conspicuous, visible, understandable, and provide sufficient response time to safely maneuver the vehicle under a wide range of conditions including (but not limited to) driver state, vehicle speed (and other dynamic conditions), vehicle type, and environmental conditions (including weather and illumination). Two key aspects of any longitudinal lane pavement marker that must be considered are the markings luminance and the contrast of the marking with the substrate (road surface). A formal definition of luminance is the luminous flux emitted from a surface per unit solid angle per unit area, projected onto a plane normal to the direction of propagation [5]. However, luminance (in general terms) may be thought of as the amount of light reflected to the vehicle operator or road scene image processing system from the longitudinal lane marker. Contrast may be generally looked at as the difference between marking luminance and local substrate luminance and the greater the contrast between the two, the greater the potential for discernibility. Thus, the

materials used for both the road surface and the lane marker may play a very significant role in affecting lane delineation. Similarly, any materials used in roadway repair and maintenance may affect discernibility of longitudinal lane markers.

Lane markers may be composed of materials including paint, thermoplastic, and preformed tape (just to name a few). Each may include glass spheres or beads to increase retroreflective properties while also relying on the pigment to enhance the markers reflective characteristics. There are many different types of paints, thermoplastics, and preformed tapes and several sources which may be referenced for further information include [31], [32], and those listed in the related websites portion of the appendix under pavement preservation. Two compositions which may be used in roadway construction are bituminous concrete and Portland cement concrete. Bituminous concrete is a road surface composed from materials including (but not limited to) hot asphalt, hot mineral aggregate and refined tar while Portland cement concrete will typically be composed of materials including (but not limited to) Portland cement, sand, water and coarse aggregate. If simply considering the luminance characteristics of the two aforementioned road surfaces, it is apparent that a 'brighter' marker located on a 'darker' surface (or vice versa) would be more discernible than a 'brighter' marker located on a 'lighter' surface under comparable conditions. However, there are many other factors which may affect lane delineation including those listed in table X.

_		
	Some potential factors affecting	Potential examples
L	lane delineation	
1.	Illumination source	Natural generated from sunlight or skylight, artificially generated light
		from street lights or automotive headlights, ambient, etc.
2.	Illumination characteristics	Brightness, spectrum, illumination area, etc.
3.	Characteristics of the light wave or particle	Polarization, wavelength, frequency, phase, energy, etc.
4.	Direction of illumination	Front directed, back, etc.
5.	Angle of illumination and angle of observation	CIE 45/0 (0/45) geometry with CIE 2° standard observer, etc.
6.	Distance between vantage point and marker	Length, time, etc.
7.	Light interaction between marker and substrate	Specular reflection, diffuse reflection, retroreflection, transmission,
		absorption, scattering, etc.
8.	Spectral selectivity	Polarizers, IR filters, spectral transmittance vs. wavelength, etc.
9.	Environmental conditions	Temperature, surface moisture, humidity, fog, atmospheric
		transmittance, precipitation, etc.
10.	Human factors	Age, cognitive capability, physical status, human optics system, motor
		skills, color perception, tendency for vehicle position within lane, etc.
11.	Vision processing system factors	Optical characteristics, electrical/mechanical/sensor characteristics,
		algorithms, architectures, environment, vehicle characteristics, etc.
12.	Vehicular characteristics	Vehicle front end length, vehicle width, windshield glass
		transmittance, height of operator or vision system above road surface,
		the location and type of headlights, etc.
13.	Materials and properties of road substrate, repair	Cement, sand, water, aggregate, refined tar, rubberized asphalt,
	or maintenance materials being used	asphaltic rubber, polymer-modified liquid asphalt, conductivity,
		reflectivity, luminance, etc.
14.	Materials and properties of longitudinal lane	Paint, thermoplastic, preformed tape, pigment, glass beads,
	marker	reflectivity, refraction, luminance, etc.
15.	Marker pattern, dimensions, gap-to-segment	Broken, normal, double, width, speed, and context dependent
	ratios	characteristics, etc.
16.	Road geometry	Vertical curves, horizontal curves, junction type, etc.
17.	Surface finish	Smooth, rough, grooved, etc.
18.	Road dirt and debris	Dust, dirt, automotive fluids, paper, etc.
19.	Illumination attenuation	Shading from roadside objects, other vehicles, etc.
20.	Discernibility	Legibility, interpretability, etc.
21.	Age, condition, performance,	Intended service life, durability, appearance and visibility, etc.
22.	Application process for marker	Paint striper, melting and forming, inlaid or overlaid, etc.
-		

#### Table X. Some potential factors affecting lane delineation